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Abstract (continued) 
is assumed to be sharp and the external scattering from the rim is added 
separately using GTD. The results based on the present approach are com- 
pared with solutions based on the hybrid asymptotic modal method. The 
agreement is found to be very good for cavities made up of planar surfaces, 
and also for cavities with curved surfaces which are not too long with re- 
spect to their width. General rules of thumb for choosing the proper GB 
expansion parameters and length to width ratios of cavities for which the 
method should be accurate are presented. It is noted that the scattering 
from external features of the cavity (other than the open end) are not of 
interest here and are thus ignored. While the development is presented here 
for the 2-D case, it can be directly extended to treat the 3-D case in a sim- 
ilar fashion. Finally, based on the nature of the approximations introduced 
in this work, the analytical procedure here may also be viewed as a beam 
shooting procedure. 
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Chapter 1 

Introduction 

1.1 Statement of the Problem and Method 
of Analysis 

The EM scattering from the interior of relatively arbitrary open-ended 
waveguide cavities with smoothly curved interior walls and with a planar 
interior termination is analyzed using a Gaussian Beam (GB) expansion of 
the incident plane wave fields at the open end. An analysis of the elec- 
tromagnetic (EM) plane wave scattering by open-ended metallic waveguide 
cavity configurations is useful for dealing with radar cross-section (RCS) 
and EM penetration problems. The cavities under consideration may con- 
tain perfectly-conducting interior cavity walls with or without a thin layer 
of material coating, or the walls may be characterized by an impedance 
boundary condition. The rim edge at the open end of the cavity is as- 
sumed to be sharp for the present discussion. 

In the present approach, the GB’s are tracked only along their beam 
axes; furthermore, these beams need to travel only from the open end to 
the termination of the waveguide cavity via reflections from the waveguide 
walls. It is not necessary to track the beams from the termination back to 
the open end to find the fields scattered into the exterior by the termination 
because the use of a generalized reciprocity theorem allows one to do so 
with the information available from tracking the fields only one way (from 
the open end to the termination). The axial beam tracking approximation 
employed here assumes that an incident GB gives rise to a reflected GB 

1 



with parameters related to the incident beam and the radius of curvature 
of the wall. It is found that this approximation breaks down for GB’s 
which come close to grazing a convex surface and when the width of the 
incident beam is comparable to the radius of curvature of the surface. It is 
important to note that the expansion of the fields at the open end depend 
on the incidence angle only through the expansion coefficients, and as a 
result the GB’s need to be tracked through the given waveguide cavity 
only one time because the tracking of beams is made independent of the 
incident angle. The latter is possible because a sufficient number of beams 
are launched in the present approach to reproduce the field variations within 
the cavity in a reasonably accurate fashion for all incident angles of interest. 
Therefore, only the initial beam amplitudes change with the incident angle 
and not the beam directions. At the termination, the sum of all the GB’s 
are then integrated using a result developed from a generalized reciprocity 
principle as mentioned earlier, to give the fields scattered from the interior 
of the cavity. The external scattering from the rim at the open end of 
the waveguide cavity is added separately using the geometrical theory of 
diffraction (GTD) and the results are compared with solutions based on the 
hybrid asymptotic modal method. The agreement is found to be very good 
for cavities made up of planar surfaces, and for cavities with curved surfaces 
which are not too long with respect to their width. General rules of thumb 
for choosing the proper GB expansion parameters and length to width 
ratios of cavities for which the method should be accurate are presented. 
It is noted that the scattering from external features of the cavity (other 
than the open end) are not of interest here and are thus ignored. While the 
development is presented here for the 2-D case, it can be directly extended 
to treat the 3-D case in a similar fashion. Finally, based on the nature of the 
approximations introduced in this work, the resulting analytical procedure 
developed here is referred to as the axial Gaussian beam method which 
may also be viewed as a beam shooting procedure. 

1.2 Previous Work 
A variety of waveguide cavity geometries have been analyzed in the past 
using various methods. The two main techniques were 1) a hybrid conibina- 
tion of asymptotic high frequency and modal methods, and 2) the geomet- 
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rical optics (GO) ray shooting method. It is noted that a rigorous analysis 
of the problem under consideration is possible only for a very small number 
of special cavity shapes, e.g., cavities formed by open-ended semi-infinite 
parallel plate and circular waveguides with a planar interior termination. 
Hence, it is necessary to resort to approximate techniques of analysis such 
as those indicated above. Both of these approaches involve the use of high 
frequency approximations. 

1.2.1 Hybrid asymptotic modal method 
The approach based on a hybrid combination of asymptotic and modal 
techniques, which is employed within the framework of the self-consistent 
multiple scattering method (or the generalized scattering matrix method) 
[l], can be applied to efficiently treat the EM scattering by open-ended 
cavities which can be built up by joining together waveguide sections for 
which the modes and their corresponding modal rays are known analytically 
in closed form [2,3,4]. Some examples of cavities which can be built up from 
different piecewise separable waveguide sections are illustrated in Figure 
1.1. The high frequency asymptotic methods, e.g., the geometrical theory 
of diffraction (GTD) [ 5 ] ,  and its uniform version (UTD) [6,7] as well as 
the equivalent current method (ECM) [7,8] and also the physical theory of 
diffraction (PTD) [7,9,10], are employed in this hybrid formulation to find 
the elements of the generalized modal scattering matrices which describe 
the wave reflection and transmission properties of the junctions between the 
different waveguide sections. The asymptotic methods provide relatively 
simple expressions for the elements of the generalized modal scattering 
matrices in contrast to the more cumbersome and far less efficient numerical 
modal matching or integral equation techniques. 

In principle, the sizes of the generalized modal scattering matrices are 
infinite as the concept of ordinary scattering matrices is generalized to in- 
clude both the finite number of propagating as well as the infinite number 
of evanescent modes in closed waveguide regions. However, in practice, the 
sizes of the scattering matrices are dictated by just the number of prop- 
agating modes and a few significant evanescent modes which exist within 
the waveguide sections on either side of the junctions. If the waveguide 
sections are sufficiently long then the effects of the evanescent modes can 
be ignored. 

3 



a) cavity with varying rectangular cross-section 

b) cavity with circular cross-section 

Figure 1.1: Examples of open-ended waveguide cavities made up of piece- 
wise uniform waveguide sections. 
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Finally, the field scattered by the waveguide cavity which includes the 
effects of all the multiple wave interactions between the various junctions is 
calculated in terms of the junction scattering matrices via the self-consistent 
multiple scattering method, or the generalized scattering matrix technique 
111; it is assumed in this calculation that the scattering (or reflection) matrix 
of the interior termination can also be found. 

An interesting selective modal behavior which can be inferred from the 
hybrid asymptotic-modal analysis is that the modes most strongly coupled 
into (or radiated from) the open end are those whose modal ray angles are 
most nearly parallel to the direction of incidence (or scattering) [3,11]. The 
modal ray angles alluded to in the preceding statement regarding the selec- 
tive modal scheme are those associated with the modes in the first waveg- 
uide section containing the open end. This selective modal scheme, which 
is demonstrated in Figure 1.2, can be employed to increase the efficiency of 
computation of the field scattered from open-ended cavities, especially at 
high frequencies where a large number of modes can be excited. 

It is noted that a perturbation of the hybrid approach can also be em- 
ployed in some relatively simple cases to efficiently but approximately take 
into account the effect of a thin absorber coating on the interior walls of 
the waveguide sections comprising the cavity [4]. On the other hand, one 
could also use a more rigorous procedure, but that would in general be very 
cumbersome both analytically and numerically. 

1.2.2 
While the hybrid asymptotic modal procedure is useful, it is primarily suit- 
able, as mentioned previously, to treat cavities which can be built up from 
piecewise separable waveguide configurations for which the modes (and 
modal rays) can be found analytically in closed form. On the other hand, 
modes in a conventional sense cannot even be defined for waveguide cavities 
with non-uniformly varying cross-sections. An analysis of the EM scatter- 
ing by slowly varying but otherwise relatively arbitrarily shaped open-ended 
cavities, for which the effects of diffraction by interior walls are small, can 
be performed approximately via the geometrical optics (GO) ray approach 
used in conjunction with the aperture integration (AI) method. In this 
technique, the part of the incident plane wave which is intercepted by the 
aperture at the open end is initially divided into a sufficiently large number 

Geometrical optics/apert ure integration met hod 
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Figure 1.2: RCS pattern of a piecewise linearly tapered open-ended waveg- 
uide cavity, calculated using the hybrid asymptotic modal method, which 
demonstrates the selective modal scheme. 
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INCIDENT PLANE 
WAVE FIELD /GO RAY CAUSTIC 

GO SHADOW 
REGION 

Figure 1.3: GO ray tubes launched into an open-ended cavity demonstrat- 
ing a ray caustic and a shadow region. 

of parallel ray tubes which are shot into the cavity as in Figure 1.3. These 
ray tubes (or a dense grid of rays) are then tracked via all possible cavity 
wall reflections to the interior termination and then back to the open end. 
Figure 1.4 shows one such ray tube. Each reflection off the cavity wall is 
calculated via the laws of ordinary GO. The polarization, divergence, phase 
and magnitude of each ray tube is kept track of as it is traced through the 
cavity. 

It is nofed that  the ray tubes which arrive from the termination to 
exit from the open end generally exist only in a discrete set of directions, 
and hence give rise to a discontinuous field behavior. Consequently, it 
is necessary to evaluate the radiation integral over the equivalent sources 
defined by the exiting ray tubes in the aperture to obtain a continuous value 
for the field that comes back out of the cavity (4,13,14,15,16,17]. Figure 
1.5 demonstrates several ray tubes exiting the cavity and their projections 
in the plane of the aperture. This combination of GO and AI procedures 
may be more precisely called the GO/AI technique, rather than just the GO 
technique. The GO/AI technique has also been referred to as the “shooting 
and bouncing rays” (SBR) technique in [15,16,17]. 
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Figure 1.4: G O  ray tube tracked inside a waveguide cavity until it exits 
through the open end. 
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RAY TUBE 
A X E S  

Figure 1.5: Projections of exiting ray tubes in the plane of the aperture of 
an open-ended cavity. 
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In [15], the EM scattering by a non-uniform S-shaped, three-dimensional 
waveguide cavity with a planar short circuit termination is analyzed. It is 
noted that such a conceptually simple GO/AI or SBR approach can also in- 
clude the effect of absorber coating on the interior cavity walls. In general, 
one finds that the GO/AI (SBR) based calculations usually provide the 
dominant trends present in the corresponding results based on the more 
rigorous hybrid asymptotic-modal analysis. The details of the scattered 
field patterns are generally not reproduced accurately at moderately high 
frequencies by the GO/AI (SBR) procedure; on the other hand, this tech- 
nique in general predicts the peak envelope of the RCS quite well and it 
tends to become increasingly more accurate at higher frequencies. 

1.3 The Axial Gaussian Beam Tracking Method 
It is noted that one typically requires the density of ray tubes entering the 
cavity aperture to be about 350 per square wavelength (in the aperture) or 
inore for convergence in the GO/AI (SBR) approach [4,15]. Thus, at high 
frequencies, an extremely large number of ray tubes must be allowed to 
enter the cavity, and each tube must be tracked through the whole length 
of the waveguide cavity and back via multiple wall bounces in the GO/AI 
(SBR) approach. Likewise, at high frequencies, an extremely large number 
of modes are excited which must be included in the hybrid asymptotic- 
modal analysis of separable (or piecewise separable) waveguide cavity con- 
figurations. Therefore, both the GO/AI (SBR), and the hybrid approaches 
discussed above become cumbersome and inefficient at high frequencies. 

Recently, a hybrid ray-mode analysis, which is more efficient than ei- 
ther the ray or the modal techniques used separately, has been developed 
in [18,19] for describing the fields coupled into large open-ended parallel 
plate and circular waveguides. A different approach which potentially re- 
tains the simplicity and generality of the GO approach, but which at the 
same time is more efficient and overcomes some of the limitations of the 
GO ray technique, is considered here. The latter approach, which like the 
GO/AI (SBR) approach is also a high frequency approach, employs spec- 
strally narrow or well collimated Gaussian beams (GB’s) to represent the 
fields launched from the open end into the waveguide cavity. Each Gaus- 
sian beam (GB) is then tracked approximately as a ray along the beam 
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axis. This GB approach, again like the GO/AI approach, is valid for slowly 
varying but otherwise relatively arbitrarily shaped open-ended waveguide 
cavities for which the effects of diffraction by the interior walls are small; 
furthermore, it can also account for the effects of absorber coating on the in- 
terior cavity walls. In previous related work, a single focussed beam (e.g., a 
laser beam) injected into a closed parallel plate or an open dielectric waveg- 
uide of infinite extent was tracked paraxially as one GB via the complex 
source point method [20]; also GB’s have been employed to represent the 
far zone radiation fields of aperture antennas in free space [21]. Recently, 
a self-consistent procedure has been developed to arrive at a complete ex- 
pansion for the aperture fields in terms of GB’s for application to radome 
analysis [22]. Such a procedure [22] could also be used here to generate the 
GB’s; however, the resulting angularly rotated GB’s in that expansion will 
now have differing waist sizes and non-uniform angular spacing. However, 
the present use of GB’s is somewhat different and novel in that all of the 
GB’s are identical and equally space in angle when they are launched. 

There appear to be some important advantages to be gained by using the 
GB approach over the GO/AI approach for the following reasons. The GO 
approximation neglects the effects of rays diffracted by the aperture edges 
at the open end which can enter into the waveguide cavity; these effects (in 
addition to the effects of interior cavity wall curvature) significantly diffuse 
the initially collimated GO incident field as it propagates large distances 
into the cavity. Furthermore, the GO field description fails at and near 
ray caustics; such ray caustics can occur if the GO rays undergo reflections 
from portions of the interior cavity walls which are concave (see Figures 1.3 
and 1.4) or exhibit points of inflection. On the other hand, the field of the 
GB’s launched from the aperture into the interior waveguide cavity region 
as in Figure 1.6 includes the contribution of the aperture edge diffracted 
fields which enter the cavity, and the GB description remains valid at ray 
caustics. It also appears that one needs to launch less than 25 GB’s per 
square wavelength in the aperture to accurately represent the interior fields 
over a sufficient distance within the slowly varying waveguide cavity pro- 
vided the aperture is large enough to launch well collimated GB’s inside the 
cavity. Another significant advantage of the GB’s which is not present in 
the GO/AI approach is that if the density of the GB’s is appropriately in- 
creased to about 200 per square wavelength in the aperture, then the GB’s 
become independent of the incident angle over a sufficiently large range of 
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Figure 1.6: 
open-ended cavity from the pth subaperture. 

Example of one typical Gaussian beam launched into an 

frequencies, and therefore need to be tracked only once within the interior. 
In coiitrast, the GO rays need to be tracked each time the incident angle is 
changed. This advantage of the GB’s comes from the fact that they can be 
launched as a phase-space like array which is sufficiently dense to cover the 
entire angular range of interest. Thus, if the expansion in terms of GB’s is 
selected to be independent of the incident angle, then only the initial GB 
amplitudes change with the incident angle. Moreover, this suggests that 
not all GB amplitudes are significant so that one can even pre-select the 
most strongly excited GB’s, just as in the selective modd scheme men- 
tioned earlier [ll], to once again further reduce the computational times. 
On the other hand, one finds that the axial (real ray) tracking of the GB’s 
requires one to launch well focussed GB’s whose spatially wide waists must 
fit well within the waveguide cavity. The spatially wide GB’s sample a 
wide portion of the reflecting cavity walls and undergo distortion at each 

. reflection thus limiting their use to waveguide cavities which are not too 
long compared to their width. More work needs to be done to overcome 
this limitation of the axial GB shooting approach. 

The format of this paper is as follows. Chapter 2 will formulate the 
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problem and divide it up into its component parts. Chapter 3 will de- 
rive the typical Gaussian beam basis function and discuss its properties, 
and Chapter 4 will express the sub-aperture expansion using the GB basis 
function. Chapter 5 discusses how the GB’s are traced inside the waveguide 
cavity to the termination and Chapter 6 presents some numerical results. 
The aspects of incidence and scattering of interest in the present work are 
restricted primarily to the sector 0” < e;,@ < 60” where the incident and 
scattering directions 8; and 8, respectively, are with respect to the axis of 
the waveguide cavity at the open end. Furthermore, the scattering from 
all exterior features except by the edges at the open end of semi-infinite 
cavities will be excluded in the present work. Only the scattering by the 
edges at the open end and by the interior cavity termination are of main 
concern here. 

The analysis in this report is predominately for the two dimensional (2- 
D) case. Therefore, the two possible polarizations are “soft” polarization 
in which the E-field is normal to the plane of the geometry, and “hard” 
polarization in which the H-field is normal to the geometry. Throughout 
the report, the letter U will be used to represent either the E-field or 
the H-field, depending on polarization, soft or hard, respectively. Also, U 
represents the scalar portion of d .  Finally, an ejwt time dependence for the 
EM fields will be assumed and suppressed in the analysis to follow. 
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Chapter 2 

Formulation of the Axial 
Gaussian Beam Tracking 
Method 

The contributions to the scattering from an open-ended waveguide cavity 
which are of primary interest in this work consist of the following com- 
ponents: the external scattering by the edges at the open end, and the 
internal scattering due to incident energy which is coupled to the interior 
of the cavity, reflected and re-radiated. All other external scattering effects 
from the body of which the cavity is a part of are not of interest here and 
are therefore not included in this analysis. Figure 2.1 shows a general two 
dimensioiial (2-D) geometry which illustrates this. The scattered field can 
then be written as 

+ + 
where UeG is the edge scattering component and U,,, is the interior cavity 
scattering component. 

2.1 Scattering by the Edge of the Cavity 
The fields scattered by the edge at the open end of the cavity can be found 
easily using the Geometrical Theory of Diffraction (GTD). The scattered 
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Figure 2.1: Scattering components of a 2-D open-ended waveguide cavity. 

field is given to first order as (see [4]) 

where Vi is the magnitude of the incident plane wave, tJi is the incidence 
angle, Od is the observation angle, p is the distance to the receiver, and d is 
the width of the open end, as shown in Figure 2.2. D8,h is the appropriate 
soft or hard diffraction coefficient (Keller's form, see 151) given by 

1 1 
T (Y)  cos: -cos 

sin (t) 
D 8 , h ( 4 ,  4') = 

IV A n = 2 - -  
R 

where W A  is the wedge angle of the rim, as shown in Figure 2.2. The edge 
scattered field given by (2.2)-(2.4) includes only first order non-uniform 
diffraction. This first order result in (2.2) is quite adequate for large guide 
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W A  

Figure 2.2: Geometry of a 2-D open-ended waveguide cavity with a planar 
short circuit termination. 

widths d and for angles of incidence (e;) which are not too close to f90", 
because in these cases, the higher order (or multiple) diffraction effects are 
small and can be neglected. 

In general, the total field scattered by a large open-ended waveguide 
cavity is dominated by the interior scattering, whereas, the edge scattering 
is almost negligible by comparison. However, if the cavity contains a large 
amount of loss, such as that due to interior absorber wall coatings, the edge 
scattering may become much more noticeable. Therefore, it is important 
to include this scattering mechanism in calculations, especially if there is 
loss present. 

2.2 Scattering from the Interior of the Cav- 
ity 

'The contribution to the scattering from the interior of an open-ended waveg- 
uide cavity is found by coupling the plane wave field incident on the open 
end into the cavity and then tracking the fields via a GB expansion through 
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the cavity to the termination. The fields at the termination are then inte- 
grated using the reaction integral described in Appendix B and derived in 
[23]. Using equation (B.14) or (B.15), the cavity scattered field for a planar 
(short circuit) termination is then given by 

using the geometry of Figure 2.2. U: is the field at the termination due to a 
plane wave incident on the open end of the cavity from the direction of the 
source, and UF is the field at the termination due to a plane wave incident 
on the open end of the cavity from the direction of the receiver, both in the 
absence of the termination. The incident plane waves have magnitude U;. 
The minus or plus sign of (2.5) is for soft or hard polarization, respectively. 

The fields inside the cavity are found by first expanding the fields inci- 
dent at the open end in terms of shifted and rotated Gaussian beams (GB's). 
Each GB in the expansion of the fields at the open end is then tracked like 
a ray along its beam axis, to the termination within the waveguide cavity. 
In order to track beams axially and maintain sufficient resolution even af- 
ter successive reflections off the interior walls it is necessary to have well 
focussed or spectrally narrow GB's. However, such spectrally narrow GB's 
have wide waists. It is thus important to be able to have spectrally narrow 
GB's whose waists can fit easily within the waveguide cavity. Typically the 
initial waists of the GB's at the aperture plane should be about half the 
width of the original aperture. The latter can be accomplished by dividing 
the aperture at the open end into equally sized sub-apertures, and then 
expanding the fields of each sub-aperture into a superposition of rotated 
GB's with equal angular spacing between each rotated beam. A procedure 
to determine the size of the sub-apertures and the number of GB's launched 
per sub-aperture as well as the initial GB parameters is discussed later in 
Chapter 4. Figure 1.6 illustrates the sub-aperture expansion and shows one 
GB being tracked inside the cavity via the axial approximation. The fields 
at a point Pcau inside the cavity can then be written as 

M N  

u, ig (pcau)  = Am(@i,on)Bmn(pcau) (2.6) 
m=-M n=-N 

M N  
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where B,,(P,) is the field at P, due to the Gaussian beam launched from 
sub-aperture m at an angle e,, which has been traced inside the cav- 
ity. There are 2M + 1 sub-apertures and 2N + 1 GB’s per sub-aperture. 
A,(@;,@,) and Am(Bd,@,) are the expansion coefficients for the mnth GB 
which depend on the incidence angle 8; and the scattering angle @d,  respec- 
t ively. 

Since the expansions of (2.6) and (2.7) depend on the incidence and 
scattering angles only through A,(@;, 8,) and Am(@d, e,), the individual 
beaiiis need to be traced only once for a wide range of angles. Also, because 
the termination reciprocity integral of (2.5) is used, the GB’s need to be 
tracked only to the termination and not back again to the aperture. These 
aspects make the GB expansion method very efficient computationally. 

Next, Chapter 3 will derive the expression for B,, corresponding to 
the GB basis function used in the expansion of (2.6) and Chapter 4 will 
derive the coefficients Am(8i,8,) of the GB expansion. Chapter 5 will then 
discuss how the GB’s are traced along their central a x i s  inside the waveguide 
cavity and Chapter 6 will present some numerical results calculated using 
the equations of this and subsequent chapters. 
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m Chapter 3 

Gaussian Beams as Field Basis 
F’unctions 

The present Gaussian beam (GB) method uses well focused GB’s to track 
the fields inside a waveguide cavity. This method is useful because the GB’s 
are exact solutions to the wave equation (in paraxial regions) and there- 
fore are well-behaved everywhere (even at caustics), and their propagation 
and scattering characteristics can be found using conventional techniques. 
Also, it has been shown by Gabor that a set of Gaussian distributions with 
appropriate linear phases can be used as a complete expansion for aperture 
fields [24,25]. The results in this report are restricted to two dimensions (2- 
D), however, the GB method can be extended to 3-D in a straightforward 
manner. In this chapter, the GB basis function which will be used in the 
sub-aperture expansion will be derived from a 2-D Green’s function with a 
complex source location (261, and some of the important properties of GB 
basis functions will be discussed. 

3.1 A Gaussian Beam as the Paraxial Field 
of a Point Source Located in Complex 
Space 

A GB can be derived as the paraxial form of the 2-D Green’s function when 
the source point is located in complex space [26]. The 2-D Green’s function 

I 
I 
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is given by 

T = d ( X  - 2‘)’ + (2 - 2’)’ (3.3) 

where H:’) a Hankel function of the second kind and (x ‘ ,  z’)  and ( x ,  z )  are 
the source and observer locations, respectively, in the x - z plane. The 
approximation of ( 3 . 2 )  is valid for kr >> 1. The paraxial form of T is 

( x  - x‘)2 

2 ( z  - 2‘) 
T 25 Z - Z ’ +  (3-4) 

which is valid for ( z  - 
To obtain the Gaussian amplitude characteristic desired, we make the 

source location ( x ’ ,  z ‘ )  = ( 0 ,  - j b )  where b is an arbitrary positive real con- 
stant, sometimes referred to as the “beam parameter”. ( 3 . 4 )  becomes (in 
the paraxial region) 

>> (z - x ’ ) ~ .  

T = r + j b +  
2 ( z  + j b )  

which can be re-written as 

bx 
- + j b  

z x 2  
= + 2(22 + b2) j 2 ( 9  + b2) 

(3.5) 

which separates the real and imaginary parts of T .  Substituting this into 
( 3 . 2 )  gives the paraxial Green’s function for a complex source location as 

which has the familiar quadratic phase of a cylindrically spreading wave, 
paraxial with respect to the z-axis, along with a Gaussian amplitude dis- 
.tribution transverse to the direction of propagation. In other words, for 
a constant z ,  the amplitude of the beam in the transverse ( x )  direction is 
a Gaussian function centered on the z-axis. Notice also that (3.7) is not 
singular at z = 0. 
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3.2 The Gaussian Beam Basis Function and 
its Properties 

The GB basis function used in this chapter has the form of (3.7) with a 
more convenient constant in front, 

chosen so that B(0,O) = 1. Two important parameters of the GB are the 
phasefront radius of curvature, R(z) ,  and the waist function, w(z), which 
are given by 

1 
- (z2  I + b 2 )  
.6 

r 

W ( Z )  = ---(z2 + b 2 ) .  \i f b  

(3.9) 

(3.10) 

Of these two parameters, w(z) is the most often referred to because it de- 
scribes the effective boundary of the beam, outside of which the amplitude 
of the beam is less than l / e  of its on-axis value (8.7 dB down). As z becomes 
much larger than b, (3.10) indicates that the waist function approaches a 
linear asymptote given by 

(3.11) 

for z2 >> b2.  Figure 3.1 shows the waist function plotted for different values 
of b along with its asymptote. 

The beam waist width, wo is defined as twice the minimum of the waist 
function: 

20, = 2 4 0 )  

= 2/;. (3.12) 

This is a measure of the width of the beam at its narrowest point, i.e., at its 
waist. As Figure 3.1 shows, beams with smaller beam waists diverge faster 
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Figure 3.1: Gaussian beam waist function for 3 values of the beam param- 
eter, b. 

than beams with larger waists. However, beams with large waists may not 
fit inside a waveguide cavity. This is the trade-off limitation of using GB’s 
to track the fields inside waveguides. Beams which start out small may 
diverge too fast and become too large to fit the waveguide a&er propagating 
a short distance. On the other hand, beams which start out with a large 
waist diverge slower, but they may already be too large. Therefore, this 
inethod which tracks beams axially like rays, is expected to work well only 
for waveguide cavities which are wide in ternis of wavelength and not very 
long. The allowable length to width ratio will increase with frequency. 

The far field form of the beam basis function (3.8) is also of interest 
mainly so that GB’s can be matched to the far field pattern of an aperture 
using point matching. Changing to the ( p ,  8) coordinate system, where p is 
the distance to the observer from the origin and 8 is the angular displace- 
ment from the z-axis, transforms t and z to 
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Substituting these into (3.8) and letting p approach infinity gives 

(3.15) 

for 181 << x .  This shows that the GB basis function is also Gaussian in the 
angle 8 in the far field. The angular beam width, BWo, is defined as the 
l / e  angular width of the beam in the far field: 

(3.16) 

Comparing (3.16) and (3.12) shows that for a small angular beam width, 
the beam parameter b is large, giving a large waist. This was discussed 
earlier in terms of the waist function of (3.10) and is illustrated graphically 
in Figure 3.1, where the angles that the asymptotes make with the z-axis 
correspond to half the angular beam width. 
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Chapter 4 

Sub-Aperture Field Expansion 
Using Gaussian Beams 

In this chapter, the fields radiating from an aperture illuminated by a plane 
wave will be expanded in terms of shifted and rotated Gaussian beam (GB) 
basis functions. Figure 4.1 shows the geometry. Numerical results will be 
presented to demonstrate the use of the method and its accuracy. 

4.1 Formulation of the Sub-Aperture Expan- 
sion 

The sub-aperture expansion method described in Appendix A is used to 
write the fields in the z > 0 half-plane as a double summation of GB’s: 

M N  

UGB = Arn(6i,6n)B(zrnn,zmn) ( 4 4  
m=-M n=-N 

which is a sum over the 2M + 1 sub-apertures and the 2 N  + 1 rotated 
GB’s of each sub-aperture. Am(6;,6,) is the expansion coefficient of the 
GB basis function B(z,,, z,,), where (z,,, zmn) is the coordinate system 
of the mnth GB, as shown in Figure 4.2. z,, and z,, are given in terms 

, of z, z ,  and 0, by 

zmn = (z - ma) cos 6, - z sin 6, (4.2) 
z,, = (z - ma) sin 6, + z cos 6 ,  (4.3) 
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Figure 4.1: Plane wave incident on an aperture of width d. 
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Figure 4.2: Coordinate system of the mnth 
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where A is the sub-aperture width given by (A.3). The z,,-axis is the 
beam axis of the mnth GB which makes an angle of 8, with the z-axis. The 
GB’s are equally spaced in angle, i.e., 8, = nA8 where A8 is the angular 
separation of adjacent rotated beams. B ( z ,  z )  is defined by (3.8). 

It should be noted that the expansion of (4.1) is slightly different than 
the Gabor based expansion used in [25] and [21]. Gabor’s expansion con- 
sists of a double ‘summation over shifted Gaussian functions with linear 
phases [24]. It happens that in the paraxial region that a rotated Gaus- 
sian beam has a linear phase through its waist. Therefore, the fields of 
an aperture which are written as a Gabor expansion can be propagated 
beyond the aperture by replacing the linearly phased Gaussian functions 
in the aperture with shifted and rotated Gaussian beams whose waists are 
in the aperture. This is because the propagation characteristics of GB’s 
are well known. However, Gabor’s expansion gives rise to GB’s which are 
not all identical and equally spaced in angle as in the expansion of (4.1) 
used in this report. In fact, as shown in [21], it also gives rise to evanescent 
type beams which die out away from the aperture; this is to be expected 
since the Gabor expansion is known to be complete. Gabor’s expansion is 
a double infinite summation which must be truncated somehow to be of 
practical use, as investigated in [21]. In the course of the work detailed 
in this report, it was found that the expansion of (4.1) is more useful for 
the open-ended waveguide cavity application. As will be shown later, this 
expansion remains valid in both the near and far fields of the aperture. 

To find the expansion coefficients A,(&,@,), the far field pattern of the 
ntth sub-aperture illuminated by a plane wave is used. This is given by 

Ge-jk(pm;A sinei) sinc [--kA(sindm 1 - sin&)] 
2 UPO(Pm,@rn) = 2uoA 

(4-4) 

which is derived in Appendix A using the Physical Optics (PO) approxi- 
mation (or equivalently, the Kirchhoff approximation). prn and ern are the 
cylindrical coordinates of the mth sub-aperture (see Figure A.2). U, is the 
magnitude of the incident plane wave field. This far field pattern can also 
be written in terms of the far field form of the GB’s as 
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where 

The expansion coefficients A, (e;, e,) are found by point-matching each 
beam of (4.5) with the pattern (4.4) at 0, = e,, Le., 

Solving for A, ( O ; ,  e,) gives 

A m  ( 8; en) - sin&) . 1 IC - jkmA sin 6,) 

(4.8) 
C is a constant which is introduced to account for the effects of overlapping 
adjacent beams. This will be discussed next, along with a way of finding 
the beam parameter b, in terms of the desired angular spacing of the beams, 
A@. 

Consider three adjacent GB's in the far field represented by three iden- 
tical Gaussian functions of maximum amplitude C, in which each is sepa- 
rated by an angular rotation of A(?, as shown in Figure 4.3. It is desired 
at first to synthesize a constant function of unit amplitude in the range 
4 - a < $ < 4 + with these three Gaussian functions. Thus, we want the 
superposition of the three beams in the vicinity of the central beam to be 
as close as possible to a constant of unity. W e  have two variables to adjust: 
the amplitude C ,  and the beam parameter b. By requiring that the sum 
of the three beams be unity at the center of the middle beam and at the 
point half-way between the middle beam and either of the two side beams, 
a system of two equations is obtained: 

(4.9) 
C + 2Ce-5 'kbAB2 = 1 

2 ~ e - f k b ( i ~ 6 ) '  = 1. (4.10) 

The constant C can be factored out and the two equations combined to 
give 

1 + 2 ( e -  !&bAe') - 2e- fkbAB' = o  (4.11) 
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Figure 4.3: Three adjacent identical Gaussian functions separated by A@. 

which has only one unknown, b. Unfortunately, (4.11) has no real solution; 
however, it has a positive ininimum at 

Using this value of b substituted in (4.11) gives 

(4.12) 

(4.13) 

which was found to be close enough to zero for our purposes. This equation 
gives b in terms of A8, either of which can be chosen to best fit the given 
sub-aperture size. For example, A8 should be small enough so that the 
far field pattern is adequately reproduced by the GB expansion. This is 
achieved by requiring that there are at least three or four GB’s per lobe 
of the far field pattern. However, for a small sub-aperture size the lobes 

, might be quite large, so a larger number of narrower GB’s may be desirable 
to keep the GB’s well focused and confined within the paraxial region. On 
the other hand, (4.12) shows that a small A8 will make b large which will 
make the beam waist, w,, of (3.12) large, as discussed earlier in terms of 
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the angular beam width, SW,. In fact, the angular beam width can now 
be written in terms of the beam spacing by substituting (4.12) into (3.16): 

x 1.471A8 (4.14) 

which shows that the angular beam width is a little larger than the angu- 
lar beam spacing, as might be expected because the GB’s should overlap 
somewhat to adequately cover all space. 

Substituting the value of b given by (4.12) into (4.9) and (4.10), respec- 
tively, suggests two values for C :  

= 1.315 1 + 2e-?jkbA82 

= 1 / c  

= 1 / c .  
= 1.260 2e- :kbAe2 

(4.15) 

(4.16) 

The average of these two values was found to work best: 

= .7771 (4.17) 

which again shows that the beams overlap a little, affecting adjacent beams. 
If there were very little overlapping, C would be closer to unity. Figure 4.4 
shows the three Gaussian functions of Figure 4.3 and their sum using the 
b and C parameters derived above. It shows a function relatively close to 
unity in the vicinity of the middle beam. 

While the C obtained in (4.17) synthesized a constant function of unit 
amplitude over a range 3.5 < < 4.5 with three GB’s each of which has 
a peak value of C, the same value of C can be shown to also synthesize 
a linearly tapered function or more generally a function which is slowly 
varying within the range of A6. This completes the discussion on beam 
synthesis of aperture fields using information provided by the far-zone pat- 
terns of sub-apertures comprising the original aperture but with the cavity 
walls absent. Thus, one knows the initial parameteres of the beams for 
launching them within the cavity. 
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Figure 4.4: Three Gaussian functions and their sum using the derived b 
and C parameters. 

4.2 Numerical Results 
Consider the aperture geometry of Figure 4.5. It shows a 14.9 wavelength 
aperture illuminated by a plane wave incident at 15" and has five sub- 
apertures of width 2.98 wavelengths, each. Figure 4.6 shows the physical 
optics far field pattern of one of the sub-apertures (solid line) and its GB 
expansion (dotted line) which used approximately 3.5 beams per lobe of 
the pattern (actually, this means 3.5 beams per side lobe because the main 
lobe is approximately twice the width of a side lobe). Also shown are 
four adjacent GB's inside the main lobe which together sum up to give 
the middle part of the main lobe. The GB expansion can be improved in 
accuracy by increasing the number of beams per lobe, as shown in Figure 
4.7, which is the same case as in Figure 4.6 except that 4.5 beams per lobe 
are used. 

Figures 4.8 and 4.9 show the total aperture far field pattern found 
' by summing the five individual sub-aperture patterns, using 3.5 and. 4.5 
beains per lobe, respectively (dotted line). They both give excellent agree- 
ment with the PO result (solid line), with the 4.5 beams per lobe case being 
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Figure 4.5: Aperture illuminated by a plane wave incident at 15" with 5 
sub-apert ures. 

slightly more accurate than the 3.5 beams per lobe case, as expected. 
Because the GB's are valid everywhere, the radiated fields can be back- 

tracked to the aperture and compared with the incident field in the aper- 
ture. Figures 4.10(a) and (b) show the phase and amplitude of the fields in 
the plane of the aperture, respectively, corresponding to the far field pat- 
tern of Figure 4.8, which used 3.5 beams per lobe. The agreement is quite 
good, showing that the Gaussian beam expansion of fields can be used from 
aperture to far field and everywhere in between. Also, because GB's prop- 
agate independently of one another, each beam can be traced individually 
via reflections/transmissions through complex environments, provided that 
there is an adequate tracing procedure available. 

Notice that for the cases of Figures 4.6, 4.8 and 4.10, the width of the 
beam waist w,, is 9.0 A, which is larger than the sub-aperture width of 2.98 
A and larger than half the aperture width of 14.9 A. This suggests a problem 
may arise when it conies to tracing the GB's inside a waveguide cavity of 
this width because the beams will start out almost as wide at the cavity 
aperture. This is, in fact, the main limitation of the GB tracking method 
when applied to open ended waveguide cavities and will be discussed in the 
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Figure 4.6: Far field pattern of a sub-aperture illuminated by a plane wave 
and 4 component Gaussian beams, 3.5 beams/lobe. A9 = 5.5", b = 64.0 A, 
w, = 9.0 A. 
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Figure 4.7: Far field pattern of a sub-aperture illuminated by a plane wave, 
4.5 beams/lobe. A0 = 4.3", b = 105.8 A, w, = 11.6 A. 
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Figure 4.10: Fields in the plane of an apert,ure illuminated by a plane wave. 
5 sub-apertures, 3.5 beams/lobe, b = 64.0 A, w, = 9.0 A. 

35 



I 
I 
I 

Chapter 5 

I 
I 
I 

I 
I 
I 

Tracking the Gaussian Beams 
Axially Through the Interior 
of the Cavity 

Once the GB’s have been established in the sub-aperture expansion of the 
fields in the open end of the waveguide cavity, as described in Chapter 4, 
they must each be traced individually through the interior of the cavity 
to the ternination. This requires insight into how the beams propagate 
and reflect in the presence of waveguide walls. To do this rigorously, the 
fields inside the cavity due to a line source must be found as accurately as 
possible, and then the line source can be given a location in complex space; 
this directly furnishes the propagation of a Gaussian beam within the same 
environment, as discussed in [27,28,29,30]. Recall that in Chapter 3, a line 
source located in complex space generates a Gaussian beam in the paraxial 
region along some axis. However, to find the fields due to a line source in 
the presence of arbitrarily shaped waveguide walls as a function of only the 
source and receiver location is very difficult computationally because the 
reflection points must be searched for numerically. When the line source 
is located in complex space, this search becomes an order of magnitude 
more difficult because the reflecting surfaces have extensions into complex 
space. This problem has been solved only for a few simple configurations 
such as reflection and transmission at a planar or curved interface between 
two dissimilar dielectrics [27,28]) single reflection from a parabolic reflector 
antenna [29], and the multiple reflection of a GB inside a circular cross 
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Figure 5.1: A Gaussian beam which reflects near grazing from a curved 
surface. 

section [30]. 
Inside an arbitrarily shaped waveguide cavity, it is convenient to track 

the GB’s approximately like rays by tracking only their beam axes. In 
other words, the GB is assumed to have most of its energy confined to a 
narrow region around the beam axis, and a beam which is incident on a 
curved reflecting surface is assumed to give rise to a new reflected beam 
which is also Gaussian in nature. If the parameters of this new GB can 
be found easily in terms of the incident beam, the GB can be traced from 
reflection to reflection, much like tracing a ray in the Geometrical Optics 
(GO) method. However, it has been shown in [28] that the reflected beam in 
this case may look Gaussian for many practical cases, but in general it has 
asymmetries present. These asymmetries arise for cases where the incident 
GB has a width comparable to the radius of curvature of the surface or 
when the incident GB grazes the surface as shown in Figure 5.1. Also, 
because the curvature of the interior waveguide walls gradually changes, 
the GB’s must be kept narrow enough so that the area of the surface that 
they illuminate has an approximately constant radius of curvature. These 
limitations are not always easy to overcome, especially at lower frequencies 

38 



I 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 

I; 
Figure 5.2: Gaussian beam reflecting off a curved surface. 

and for waveguide cavities which are long compared to their width. This 
will be discussed further in the numerical results section. 

A simple, approximate way of finding the axial reflection of a Gaussian 
beam from a curved surface very similarly to GO ray tracing, is derived 
in this chapter. As will be seen, the main difference between the reflection 
of the beam axis and GO reflected ray tracing is that unlike the real GO 
rays which have real caustic locations, the reflected beam will have com- 
plex caustic positions. This is not surprising considering that GB’s can be 
derived from a source which is located in complex space, as described in 
Chapter 3. In the derivat,ion, it is assumed that the incident GB illumi- 
nates a small area on the surface and that, it does not come close to grazing 
incidence on the surface. 

Figure 5.2 shows the geometry for a GB reflecting off a curved surface. 
It shows an incident beam field given by 
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for z < z: + pi .  In this approximation, the reflected field is assumed to be 
a new Gaussian beam whose a x i s  intersects the surface at the same point 
as the incident beam a x i s .  The reflected beam is given by 

for z > z: + p:. These have the same form as the beam basis function of 
(3.8) but are shifted along the z-axis. The total phase propagation at any 
point along the beam axis is z, and 2 is always the coordinate transverse 
to the z-axis. Note that the z-axis, which is always the beam axis,  changes 
directions after reflection. U,, b, and 2, are the beam coefficient, beam 
parameter, and beam waist position along the z-axis, respectively, with the 
primes indicating values before reflection. p: and pc are the distances from 
the beam waist to the point of reflection Q, before and after reflection, 
respectively, and R, is the radius of curvature of the surface at Q. This 
derivation is also valid for concave surfaces for which R, is negative. Here 
ii is the unit vector normal to the surface at the point Q and 8; and 9, are 
the angles the incident and reflected beam axes make with ii, respectively. 

The parameters of the reflected beam, U,, b, z,, p,, and 8, can be found 
in terms of the incident parameters by matching the fields on the surface 
in the vicinity of the reflection point of the beam axis (Q). First, matching 
the beanis right at point Q gives 

where R(8i) is the reflection coefficient at Q. Inspection of this equation 
gives Uo and z ,  as 

(5.4) 

( 5 - 5 )  
I 

Lo = 2; + p, - p c .  

The remaining parameters can be found by expanding each of the incident 
and refleded beam fields on the surface in a Taylor series as a function of 
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I 
1 
I 
I the displacement from point Q. Equating the constant terms of these two 

series gives (5.3) above. Equating the linear terms gives the relation 

e, = 8; (5.6) 

which is the law of reflection for a GO ray. Finally, equating the quadratic 
terms of the incident and reflected surface field Taylor series expansions 
and using the reflection law of (5.6) yields 

1 2 + (5.7) - -  - 1 
pc + j b  p: + j b‘ R, cos 6; 

This is the same result as GO would give for a ray along the beam axis, 
except that the caustic distances are now complex (b‘ ,b  # 0). Notice that 
pc and b can be solved for separately by equating the real and imaginary 
parts of (5.7). This gives 

p:( R, cos ei + 2p:) + 2bt2 
pc = ~ , ~ ~ ~ e ~  

(R ,  COS 8; + 2 ~ : ) ~  + 4bt2 
(R,  cos e i ) 2  b = b’ 

(R, COS Si + 2~:)’  + 4b” * 
(5.9) 

Notice from (5 .9)  that b is going to be smaller than b’ for most cases, 
with the possible exception being for cases when R, or p: is negative. The 
angular beam width BWe, given by (3.16) is inversely proportional to b. 
What this means is that the a GB will usually become more divergent upon 
reflection from a curved surface. Therefore, the farther a GB propagates 
inside a curved waveguide cavity, the more it  will diverge and the more 
likely it will become too large to fit nicely inside the cavity and satisfy the 
restrictions of the axial beam tracing approximation. This is what limits 
the length to width ratio of the waveguide cavities that this method can be 
applied to. 

The approximations used above assumed that the incident beam illumi- 
nated an area confined to the vicinity of the reflection point Q. In reality, 
this condition may be difficult to achieve for the two cases mentioned ear- 
lier, namely, for GB’s whose beam waist function at the point of reflection 
w(z; + p:), is comparable to the surface radius of curvature R,, and for 
beams which come close to grazing the surface. The waist function is one- 
half the l / e  width of the beam as a function of the distance along the beam 
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axis, measured from the beam waist (point of minimum width). It is given 
by 

(5.10) 

If the beam illuminates too large an area of the surface, such as in the 
two cases mentioned above, the reflected field will no longer be Gaussian 
in nature. In most cases it may resemble a Gaussian beam, but it will 
probably be asymmetric to some extent. 

Once the axis of a GB has been tracked to the termination via the axial 
approximation, the fields of the beam in the presence of the waveguide walls 
in the termination plane must be found. If the beam is narrow enough and 
not close to the waveguide walls at the termination, as shown in Figure 5.3, 
the fields are simply those of the GB basis function in free space. However, 
if the beam crosses the termination plane near a wall, the fields of the image 
beam should also be included, as shown in Figure 5.4. 
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Figure 5.3: Gaussian beam crossing the plane of the termination inside a 
waveguide cavity, away from the walls. 

Figure 5.4: Gaussian beam crossing the plane of the ternination inside a 
waveguide cavity, near a wall. 
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Chapter 6 

Numerical Results 

In this chapter, some numerical results are presented which illustrate the use 
and accuracy of the axial Gaussian beam tracking method in cornparison 
with other methods. All of the geometries included are made up of perfectly 
conducting surfaces. 

Figures 6.1(a) and (b) are plots of the magnitude of the fields at a 
cross-section inside a semi-infinite parallel plate waveguide illuminated by 
a plane wave, soft and hard polarization, respectively. Once again, soft 
polarization means the E-field is normal to the plane of the page and hard 
polarization means the H-field is normal to the plane of the page. For com- 
parison, Figure 6.1 includes results found using the hybrid asymptotic high 
frequency modal method described in an earlier report [4]. This method 
is considered sufficiently accurate to be used for reference solutions. Also 
shown in the figures is the GO ray tracing solution which is also described 
in [4] for the 2-D case. As the plots show, the GO ray tracing solution is 
discontinuous due to shadowing effects of the GO field. The GB solution 
agrees nicely with the reference modal solution. 

Figure 6.2 is a plot of the backscattered fields of an open-ended parallel 
plate waveguide cavity with a short circuit termination for the soft polar- 
ization, found using the reaction integral formulation of Chapter 2 with 
Gaussian beams. In this and all subsequent plots, the scattering by the 
rim at the open end is included in the calculations, and the wedge angle 
of the rim, WA, is zero. The figure also shows plots of the modal refer- 
ence solution and the GO/AI ray tracing solution. The GB solution agrees 
nicely with the reference solution for all angles shown, while the GO/AI 
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Figure 6.1: Fields at a cross-section inside a semi-infinite parallel plate 
waveguide illuminated by a plane wave 
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Figure 6.2: Backscatter pattern of an open-ended parallel plate waveguide 
cavity with a planar short circuit termination, soft polarization. 
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solutio11 agrees well only for incidence angles within about 35' of of the 
guide axis.  It is expected that the GB method should work very well for 
waveguide cavities with planar walls because the GB reflection from these 
walls is known exactly from image theory. It is the axial approximation 
used to find the reflection of GB's from curved walls (see Chapter 5) which 
introduces the most error in the GB tracing method. 

Figures 6.3(a) and (b) are plots of the backscatter from an open-ended 
2-D S-shaped waveguide cavity with a planar termination, soft and hard 
polarizations, respectively. The cavity is made up of three uniform waveg- 
uide sections, two annular guides followed by a parallel plate guide, so the 
hybrid modal method is used as a reference solution. Each of the sections 
has an axial length of 5 wavelengths making the overall axial length 15 
wavelengths giving a length to width ratio ( L / d )  of one. The GB solution 
used 7 sub-apertures (A4 = 3) and an angular increment (AO) of 7.69'. The 
beams covered an angular range of f60" making N = 7 and giving a total 
of 105 GB's. This choice allowed 3.5 beams per lobe (see chapter 4 for a 
discussion). Using (4.12) and (3.12), the beam parameter is b = 32.7A and 
the beam waist width is w, = 6.45X. The particular choices of sub-aperture 
size and angular increment were determined by trial and error. The values 
were used which gave the minimum number of beams which reached the 
ternination too wide to fit in the guide. As a general rule of thumb, it is 
best to choose parameters which give a beam waist width w, in the open 
end which is less than half the width of the waveguide and an angular beam 
width BW@ which is less than 10". Ideally, both w, and BWe should be as 
small as possible, but since they are inversely proportional, a trade-off is 
necessary. For this relatively shallow cavity, the GB solution agrees very 
well with the modal reference solution. 

Figures 6.4(a) and (b) are the same as Figures 6.3(a) and (b), respec- 
tively, except that the waveguide sections are now each 10 wavelengths long 
giving an overall L/d of two. Figures 6.5(a) and (b) are again the same as 
Figures 6.3(a) and (b), respectively, except that the waveguide sections are 
now each 15 wavelengths long giving an overall L/d of three. The results 
still agree quite well, but perhaps not as well as for the shallower L/d  = 1 
waveguide cavity. 

Figures 6.6(a) and (b) are the same as Figures 6.5(a) and (b), respec- 
tively, but an additional parallel plate waveguide section of length 15 wave- 
lengths has been inserted between the two annular sections giving an overall 
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Figure 6.3: Backscatter from an open-ended 2-D S-shaped waveguide cavity 
with a planar termination, L / d  = 1, 7 sub-apertures, A8 = 7.69'. - 
hybrid modal solution, - - - GB solution. 
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Figure 6.4: Backscatter from an open-ended 2-D S-shaped waveguide cavity 
with a planar termination, L / d  = 2, 7 sub-apertures, A0 = 7.G9". ~ 
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Figure 6.5: Backscatter from an open-ended 2-D S-shaped waveguide cavit-y 
with a planar termination, L / d  = 3, 7 sub-apertures, A6 = 7.69'. __ 

hybrid modal solution, - - - GB solution. 
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Lld of four. These figures show the GB solution is getting worse for longer 
guide lengths. This is due to the fact that the GB's diverge and get wider 
the farther in they go until they are too wide to fit inside the waveguide. 
However, because GB's become better focussed at higher frequencies, i.e., 
they stay narrow over longer propagation paths, the cavities which the GB 
tracing method can handle are determined by frequency as well as the axial 
length to width ( L / d )  ratio. Figure 6.7 is the same as Figure 6.6(a) except 
the frequency is doubled. For this plot 11 sub-apertures and an angular 
increment of 6.04" were used. It shows a much better agreement with the 
modal solution than Figure 6.10 does, as expected. 

It was found from experience that a general rule of thumb for applying 
the GB tracing method is 

1 
4 

Lld < -d /X  

where d and L are the approximate waveguide cavity width and axial length, 
respectively and X is the wavelength. This condition determines whether a 
particular cavity can be analyzed using the GB tracing method at a given 
frequency. The inequality of (6.1) is only an approximation and it may be 
found that the GB method will work well for certain waveguide cavities 
which do not satisfy this condition. Two specific examples of this are 
parallel plate and rectangular waveguide cavities for which the GB tracing 
method will work for niuch larger L/d ratios than in (6.1). This is due to 
the fact that the planar surfaces of these guides do not diverge the GB's 
any more than free space, as in image theory. 
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Figure 6.6: Backscatter from an open-ended 2-D S-shaped waveguide cavity 
with a planar termination, L / d  = 4, 7 sub-apertures, A0 = 7.69'. - 
hybrid modal solution, - - - GB solution. 
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Figure 6.7: Backscatter from an open-ended 2-D S-shaped waveguide cavity 
with a planar termination, L / d  = 4, soft polarization, 11 sub-apertures, 
A8 = 6.04'. - hybrid modal solution, - - - GB solution. 
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Chapter 7 

Conclusions 

It was shown in Chapter 4 that the Gaussian beam (GB) expansion of 
aperture fields of a known incident field was accurate for field points every- 
where from the aperture out to the far field of the aperture. If the GB's 
are chosen to fit within the aperture and the beam waist width in the aper- 
ture is smaller than the aperture width, the GB's can be traced from the 
aperture via reflections and transmission through complex environments, 
provided the propagation characteristics of the beams are known there. In 
this report the beams were traced inside arbitrary smooth waveguide cavity 
regions like rays along their axes from the aperture at the open end. As a 
rule of thumb, the beam parameters were chosen such that the beam waist 
width, w,, in the aperture was smaller than one-half the aperture width, d, 
and the far field angular beam width, SW,, was less than 10". In general, 
both tlie width of the beam with respect to the aperture and the angular 
beam width should be made as small as possible. 

Chapter 5 showed how the GB's were traced by keeping track of succes- 
sive axial reflections of the beams from the waveguide cavity walls. It was 
assumed that the field reflected by a curved surface with a GB incident was 
a new GB with parameters which were a function of the incident GB, the 
incidence angle and the surface radius of curvature. This axial reflection 
approxiination was found to be accurate as long as the incident beam did 
not come too close to grazing the surface and the width of the beam was 
*much smaller than the surface radius of curvature. 

Once the GB's were traced to the termination of the waveguide cavity, 
the GB fields were integrated using the reaction integral, as formulated in 

54 
I 



Chapter 2 and described in Appendix B, which gave the fields backscat- 
tered by the interior of the cavity. This integral did not include multiple 
interactions between the termination of the cavity and the open end. This 
contribution could have been included, but the difficulty of doing so would 
not have outweighed the improvement in accuracy, which would have been 
almost negligable. The fields backscattered by the rim at the open end of 
the cavity were added separately, as described in Chapter 2. 

The numerical results of Chapter 6 showed excellent agreement between 
the GB tracking method and the hybrid modal reference solution for waveg- 
uide cavities which were not too long compared with their width. The GB’s 
diverge as they propagate through cavities with curved walls, and eventu- 
ally become too wide to fit nicely inside tlie waveguide region. This is what 
limits the length to width ration L/d.  For waveguide cavities with curved 
walls, a general rule of thumb derived from experience was that L/d  should 
be less than one-fourth d / X ,  where d is the average waveguide width and 
X is the wavelength. Therefore, the GB tracing method improves as the 
frequency increases or the length to width ratio decreases. 
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Appendix A 

Sub-Aperture Field Expansion 
Method 

The method of expanding the fields in an aperture in terms of the fields 
of smaller sub-apertures which make up the aperture is described in this 
appendix. For simplicity, the derivation is for the two dimensional (2-D) 
case. The extension to 3-D is straightforward and is not included in this 
report. 

Figure A.l  shows the geometry of an aperture in the t = 0 plane with a 
known incident field ei( x) inside the aperture. Throughout this appendix, 
3 represents the field which is normal to the plane of the page, either electric 
or magnetic, depending on polarization. U means "the scalar portion of 

Using equivalent currents in the aperture and the 2-D radiation integral, 
cyy. 
the field for t > 0 is given by 

where IC is the free space wave number 27r/X, and X is the free space wave- 
length. pl is the distance from the point in the aperture (xl,O), to the field 
point ( p , 8 ) .  The integral in ( A . l )  can be broken up into 2A4 + 1 equally 
.sized sub-apertures of width A: 
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Figure A.l: Geometry of an aperture with a known incident field. 

d 
2M + 1' (A.3) A =  

Define a new variable of integration, 

x:, = x' - mA (A.4) 

and define pm and 8, as shown in Figure A.2 for the mth sub-aperture. pl 
is now given by 

pl = d p k  + x g  - 2 p m x ~  sin em. (A.5) 

Keeping the first three terms in the Taylor series for pl expanded around 
x; = 0 gives 

1 x$ 1 (x$ - 2pmxl, sin Om)2 
p' M pm-x;sinOm+---- 3 . (A.6) 

2pm 8 Pm 

Getting rid of all terms of higher order than quadratic reduces (A.6) to 

(44.7) 
12; 2 

2 Pm 
pl NN pm - x; sinOm + --- cos 8,. 
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Figure A.2: 

X 

A! 
I 

r 
Geometry of the mth sub-aperture defining pm and 8,. 

The quadratic term can be dropped if its phase contribution to the expo- 
nential term of (A.2) is small enough, i.e., 

I pl FZ pm - X, sin 8,) 

where it is assumed that 1r/8 is a small enough phase to be negligible. The 
maxinium value that xk can attain is A/2.  Substituting this into (A.9) for 
2, gives I 

* (A.lO) A2 
x pm > ~ - c o s ~ O -  

which is the far field condition often encountered in aperture antenna prob- 
lems. This region is plotted in Figure A.3 for a sub-aperture of width 
A = 2X. Equivalently, (A.lO) can be written as 

- Pm > 2-c0s A 2  e,,, 
A x 
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Figure A.3: Far field region of an aperture of width A = 2X. 
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which shows that the far field distance relative to the sub-aperture size 
increases as the sub-aperture gets large in terms of wavelength. This in- 
equality is important because it determines how close the observer can be 
to the sub-aperture and still use the far field form of the radiation integral 
for a given sub-aperture size. 

Substituting the far field form of p' (A.8) back into (A.2) along with the 
change of variables in (A.4) and integrating reduces (A.2) to 

(A.12) 

which we recognize as a simple Fourier Transform relationship. Therefore, 
the fields radiating from a sub-aperture look like they are due to a non- 
isotropic line source located in the middle of the sub-aperture with a pattern 
given by the Fourier Transform integral of (A.12). 

Substituting this result into (A.2) and (A.2) into ( A . l )  gives the fields 
radiating from the full aperture, 

(A.13) 

wliich is valid anywhere as long as the observer is in the far field of all the 
sub-apertures, according to (A.lO). 

One advantage of using the sub-aperture expansion of (A.13) is that the 
far field region of each sub-aperture is much closer to the aperture plane 
than the far field region of the whole aperture which is given by 

d2 > 2- cos2 e. x (A.14) 

Inspection of (A.3) and (A.10) indicat,es that the fields of the whole aper- 
ture can be found arbitrarily close to the aperture plane using (A.13) by 
increasing the number of sub-apertures, 2 M  + 1, appropriately. However, 
the main advantage of using the sub-aperture expansion technique is that 
the fields from any particular sub-aperture appear to be originating from 
a source located at the center of the sub-aperture, provided the observer 
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Figure A.4: Plane wave field incident on an aperture of width d in  the z = 0 
plane. 

is in the far field of the sub-aperture. This allows the fields from a par- 
ticular sub-aperture to be traced in the presence of obstructions, such as 
waveguide walls, as long as these obstructions are in the far field region 
of the sub-aperture, using an appropriate field tracing method. The axial 
Gaussian beam tracing method developed in this report is an example of 
such a method. However, as is seen in a Chapter 4, the Gaussian beam 
expansion is accurate at any distance from the aperture, not just in the far 
field of the sub-apertures. 

As an example, let the incident field be due to a plane wave which 
propagates froiii left to right at an angle of 8; with the z-axis, as shown 
in Figure A.4. This is the most common type of excitation because it 
represents a source located at infinity, such as a radar antenna. This is the 
excitation used throughout this report, although any general aperture field, 
U;(x'), could be used as long as it is known or well approximated. 

Using the Kirchhoff approximation, the incident field in the aperture is 
given by 

uoe- j k r '  sin B, U;(X') = 
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Integrating this in (A.13), after some manipulation gives the fields radiating 
from the aperture as 

1 M e-jk(p,+mA sine,) 
8, - sin 0;) 

8n m=-M 6 
(A.16) 

sin x 
sinc(x) = -. 

X 
(A.17) 

The Kirchhoff approximation used in (A.15) is very accurate for high fre- 
quencies and values of 8; and 8 which are not too close to grazing. A more 
accurate representation could be found using, for example, the Physical 
Theory of Diffraction (PTD) [9], but the improvement in accuracy would 
not be enough to outweigh the added complexity for realistic aperture ge- 
ometries. 
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Appendix B 

Termination Reaction Integral 
Formulation 

In this appendix, the method of using a termination reaction integral to 
find the cavity scattered fields is briefly described. The derivation of the 
integral, which involves a reciprocity argument, can be found in [23]. The 
main advantage of this method is that the fields only need to be tracked 
from the open end of the waveguide cavity to the termination. It is not 
necessary to track them back from the termination to the open end. The 
other advantage is that this method allows the termination to be arbitrarily 
complex, as long as the reflection properties of the termination are known 
(e.g., through a modal reflection matrix or a plane wave impulse response). 

B.l General Bistatic Scattering Formulation 
for Three Dimensional Cavities 

Figure B.l shows an arbitrary open ended waveguide cavity illuminated 
by electric dipole sources dp', at point P' and dFet at point P. The scat- 
tered electric field component in the direction of d&t at point P due to 
illumination by dp', at point P' is given by 

l?:(P).dFet - - 11 ( , ? ? ~ ~ ~ ~ ~ - $ T x l ? ~ ) . f i d S  (B.l) 

where Sa is a cross-sectional surface near the termination and ii is the unit 
normal to this surface. I?? and I?? are the incident fields generated by 

s a  
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Figure B.l: Open ended waveguide cavity illuminated by two electric dipole 
sources. 

d& evaluated in the presence of the waveguide but in the absence of the 
termination. I?: and 2: are the fields generated by dp‘, and scattered 
by the termination, evaluated in the presence of the waveguide walls, i.e., 
they are the fields generated by dlo’, which are reflected by the waveguide 
termination. The total fields Jenerated by dPe could therefore be written 
as I?e = I?? + I?:o and de = H: + I?:. where I?: and d? are the incident 
fields generated by dp’, evaluated in the presence of the waveguide walls but 
in the absence of the termination. 

It should be mentioned that the scattered field of (B.l) does not in- 
clude the scattering by the open end of the waveguide. This component 
of the scattered field can be added in separately using a method such as 
the Geometrical Theory of Diffraction (GTD). Also, (B.l) does not include 
any multiple interactions between the termination and the open end of the 
waveguide cavity. However, this effect is usually negligable but it can be 
included, if desired, with some difficulty. 
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Figure B.2: 2-D open-ended waveguide cavity illuminated by plane wave. 

B.2 Reaction Integral for Two Dimensions 
The termination reaction integral (B.l) reduces for two dimensional (2-D) 
configurations, such as the one shown in Figure B.2. This waveguide cavity 
is illuminated by a plane wave with the E-field in the E direction. For this 
polarization, E’ will always be in the i direction. “E” refers to “the scalar 
portion of I?’, or equivalently, I? = iE. To obtain the far field scattering 
due to plane wave illumination using the reaction integral of (B.l), the 
points P and P’ of Figure B.l  are placed a very large distance p from 
the cavity. For the 2-D case, the dipole sources .are replaced by d i r e c t e d  
electric line sources of strength I. The left side of (B.l) becomes 

The field incident on the open end of the cavity due to an electric line 
source of strength I located at point P’ in the far field is given by 

(B.3) 
+ 
E; = EE; 
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where p is the distance from the line source and 2, is the free space 
impedance of approximately 377 ohms. Substituting for I using (B.4) and 
rearranging (B.2) gives 

The integral of (B.5) simplifies by using one of Maxwell's equations to 
elininate the magnetic fields, H,"" and l??. An arbitrary time harmonic 
magnetic field in a source free region given in terms of a z-directed electric 
field is 

+ 

V X Z  
-4 H = -- 

j k z ,  

j k z ,  
1 - - -- (2; + e t )  x ( i E )  

The integrand in (B.5) can now be rewritten in 

(B.6) 

terms of the E-field as 

1 ( .BEY y--x- - O E Y ) ]  e(-$) 
OY 

-(iE,"") x 
j k Z ,  dx 

With the two dimensional integration over Sa replaced with a one dimen- 
sional integration in the y direction and the result of (B.7),  (B.5) siinplifies 

' to 
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Replacing E by H in (B.8)) by duality the scattered magnetic field for the 
other polarization is similarly given by 

In (B.8) and (B.9)) E,""(P) and H,'"(P) are the scattered fields at point P 
due to a plane wave incident on the open end of the waveguide cavity from 
the direction of P'. E? and H P  are the fields due to a plane wave incident 
on t81ie open end of the cavity from the direction of P in the absence of the 
termination, and E,"" and H,"" are the fields scattered by the ternination 
due to a plane wave incident on the open end of the cavity from the direction 
of P'. The incident plane waves are of iiiagnitude E; or H;, depending on 
polarization. In simple terms, the bistatic scattering from the open-ended 
waveguide cavity is found by tracking the fields coupled into the cavity due 
to plane waves coming from the source and receiver directions, to a cross- 
section near the ternination. Here, the cross product of the fields from 
the receiver direction in the absence of the termination and the fields from 
the source direction scattered by the termination are integrated to give the 
scattered field at P. 

For the simple case of a short circuit termination (;.e., a perfectly con- 
ducting planar termination coinciding with Sa), the scattered fields can be 
written in terms of the incident fields at the termination as 

(B.lO) 

( B . l l )  

(B.12) 

(B.13) 

(B.8) and (B.9) become 
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for the short circuit case, where E? and H? are the fields due to a plane 
wave incident on the open end of the cavity from the direction of the source, 
and EfB and Hfg are the fields due to a plane wave incident on the open 
end of the cavity from the direction of the receiver, in the absence of the 
termination. 

For the simple case of backscatter from a cavity with a short circuit 
termination (;.e., a perfectly conducting planar termination coinciding with 
Sa), E? and HF become E? and HfB, respectively. This reduces (B.14) 
and (B.15) to 

(B.16) 

(B.17) 

respectively. These last two equations are useful computationally because 
they are functions of only the incident fields at the termination due to a 
plane wave incident from the source/receiver direction, in the absence of 
the termination. 
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